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ABSTRACT

The least upper bound of the eigenvalues of second
order density matrices for a system of fermions is proved
tobe n for a system of 2n or 2n+! identical
fermions. It is also shown that this limiting state may be
interpreted as a system of n identical pairs behaving

as quasi-bosons.



1. INTRODUCTION

It is known that some features of a system are illustrated by the
spectrum of its first-order density matrix. For example, an eigenvalue of
this matrix may be interpreted as the occupation number of the correspond-
ing spin-orbital, and if all the eigenvalues are equal to |, the state can be
described by a single Slater determinant 1). We might expect that the
spectrum of a higher-order density matrix would also characterize the
structure of the system. However, it seems that little has been done along
this line 2). In this paper, we discuss the range of the eigenvalues of a

many-particle density matrix in order to approach this problem.

1) Per-Olov Léwdin, Phys. Rev. 97, 1474 (1955)

2) See, however, the preliminary report of A.J. Coleman, Canad.

Math. Bull. 4, No. 2, May (1961). Further progress has been re-
ported by him at Sanibel Island, Winter Institute in Quantum

Chemistry and Solid State Physics, January 2-13, 1961.

For this purpose, it is convenient to use a wave function expanded in

terms of the eigenfunctions of density matrices 3). The expansion is obtained

3) B.C. Carlson and J.M. Keller, Phys. Rev. 121, 659 (1961)

by the use of the following theorems.

Theorem 1. If A 1is a linear operator which renders a completely
continuous transformation %) of one Hilbert space into another, and f is

an element of the first Hilbert space, Af can be written in the form

Af = ; pe 9o (fif).

4) See e.g. F. Riesz and B. £z -Nagy, Functional Analysis, (Frederick

Ungar Publishing Company, New York 1955) pp 206
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Here {fi} and {gi} are orthonormal sets in the two Hilbert spaces involved,
and {pi} is a non-increasing sequence of positive numbers. The sequence

can be finite or infinite, and in the latter case it tends to zero.

Corollary 1:

sup [CAS, ) /TR ING. 9 = pr.

Theorem 2. If there exists a normal operator S suchthat AS=A,

every fi is an eigenelement of S, i.e. Sfi = fi .

Although special cases of Theorem 1 have been proven by others 3 5),

it would be useful to present it in a more general form. The proof of the

above theorems is given in the Appendix A.

5) A.T. Amos and G.G. Hall, Proc. Roy. Soc. A263, 483 (1961).

A normalized wave function ‘I’(xl, Xps see xN) of N fermions may
be regarded as a kernel of the operator A, which transforms absolute

square integrable functions of M fermions into those of N - M fermions:

7

g’(x,l e, X NeMm) = JJ J,X"-“ dx»'q \_[/(x,, X N-M, x,’)...lx,:, )f(x,"...‘x,(.)

or, in a brief form

$x) = j\lf(x,)/) 'f()/) dy

where x and y denote (xl"'xN-M) and (xl'...xM') respectively.

Since the wave function Y(x,y) is normalized:

g!‘lﬁx,y)lz dxdy = (.

it renders necessarily a completely continuous transformation (for a proof,
see the Appendix B). By the use of Theorem 1, we obtain the following expan-

sion of the wave function VY :

Yooy = 2w g0 fity), ()



where

J 3.;'(x) 9;(x) dx = gij ,
* .
fign fjon dy = Sij

and

}Liélu})o for i<i.
Since the density matrix of order M of this pure state is defined
by

’ — N * 4
T\ (v, y" (M) JY(x,yJ\l’(x,])dx
we obtain immediately the diagonal expansion of the density matrix from
(1-1) in the form
N P
Th ()',]’) - (M) % ,u-i J‘u]) jf«:(_y) .

Similarly the density matrix of order N-M is found to be

Th-mx, x> = (,’,’,)% F.f g (x) &f(x') .

In order to evaluate the symmetry property of fi , it is convenient
to introduce the antisymmetry projection operator defined with respect to

the coordinates vy = (xl' ves xM') :

1
OAS,] =T4'_,%EPP-

Here P is a permutation operator which permutes only the coordinates
y and Ep isits parity. It is easy to see that OAS y is self -adjoint and
that

S‘I’(x,y) OAS,])(()') dy = jOAS,y Yx, y) foyady -j‘l’tx,])f(yn’].

Thus by using Theorem 2, it follows that OAS yf =f, 1i.e. that if the
’
function Y is antisymmetric, f. and g; in the expansion (1-1) should

also be antisymmetric.



2. THE LEAST UPPER BOUND

The largest eigenvalue of a density matrix of order M may be

regarded as a functional of Y :

Awmon (F) = (3) pui.

1ntroducing a projection operator O\y which projects out the state VY.

O = ¥ ¥,

we obtain the following equality from (1-1);

Amn(¥) = (1) (g:f1 O 94510,
Introducing the total antisymmetry projection operator
1
Oas = N % Ep P,

it is found for any function w = w(x,y) that

(W (Oas ~Oglw) = (w(1-0g)0as(1-03) w) =
=((1-0¢)w Oas(1-Ox)w) 2 0.
Thus we obtain the following inequality
Amn O¥) £ (M) (g1 s Oas 4:f.) <
< (M) z;wgt (gf Onsgf), (2-1)

where f and g are normalized functions of M and N-M particles,
respectively. Since the last term of (2-1) does not depend on ¥, it follows
that

Mun = g A ()< (M) W(gf Ons 9.§). (2-2)

We shall now prove that the last term of (2-2) is equal to >‘M N
Let {f(k)} and {g(kh be the sets of normalized functions which give a
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solution of the above extremum problem:

0 < X‘“s(ﬁ)(gmf“')oﬁs3.”"{‘”)—-)(&')%(}3‘0653)‘)

as k-~w.

Since a set of functions {‘I’(k)} defined by the equation

L% [T/ Ons go§®

consists of normalized antisymmetric functions, it follows from Corollary 1

that

Am, w (\P(h)) > (u) '(}‘h)ft?i"h),z - X(ki
i.e. that

Lim XM (‘l’(h) > Lim )L-(k.) (2-3)

kR - 00 R — 00

By comparing (2-3) with (2-2), it is found that

(2-4)

A, -(,’X);;ﬁ» (g5 Ops 3)‘)6.)
4

6)

We note that for a system of identical bosons, the whole argument
is valid by replacing the antisymmetry projection operators by the
symmetry projection operators. Thus the least upper bound of the

eigenvalues for bosons is given by the equation

7\M,~=(mﬂ;~§' (9% Os 9%) (2-5)

under the condition (f,f) = (g,g) = 1 . Here the total symmetry projec-

tion operator OS is given by the equation

Os=‘N1—!Z_P

P

It is readily seen from (2-5) that

AMN = ( ';l‘ ) . (for a system of bosons)



3. UPPER BOUNDS

It is convenient to write the antisymmetry projection operator in the

form
(?4) OMH,”',N) = Qas(4,, M) Oas (M1, N) x

minm {N=-M, M}

x (PN TMY () Pliymenamey (i mei)] Ops (4,0, M) Ons(Met -5 N)  (3-1)

i=0
where OAS(p .«. g) denotes the antisymmetry projection operator defined
with respect to the coordinates in the parenthesis, and
P{(1, M+1)(2,M+2) ... (i,M+i)} denotes the operation of replacing the
coordinate 1 by M+1i, M+! by 1, ..., i by M+i and M+i by 1i.
This shows that f and g which give the extremum in the equation (2-4)
should be antisymmetric. Therefore we may introduce the density matrices
of the i-th order I‘i
of these density matrices, we obtain

amim (M, N-M)

Awn =1+ wp Z ot TgTig. (3-2)

¢ and Fig reduced from f and g . By the use

Since density matrices are positive definite, it is easy to see that
O < & Ty Tig < mum (R Tog Ai n-m ;'hrf.«}li,m)-
: N-M .
- mim [ (M) Nwem s (M) Am ] (3-3)

From (3-2) and (3-3) we obtain an upper bound of the eigenvalues by the
recurrence equation

7)
min { (5], [ 232])

Aun<Aun =1+3 min [(ﬂ)/\zi,u-n )(Nz-i.M)/\ai,"‘]- (3-4)

1w

The solutions of (3-4) are

7) [x] stands for the integral part of x .



Aon = 1
/\1,N =

Ny = [‘;"] N2
Nain =1+ 3[22] N 26
Nan = 1+(-101+618-65) +(n-4[F))N-4[F]-1)

N 28

NAsn =1+ 10[582] + 5AL w5 N 210

It should be noticed that

Aunw= 0(NTF)

This is the same order of magnitude as the largest eigenvalue of I‘[_m_]
for a system of [g—] bosons. ‘

Since the eigenvalues of the first order density matrix of a single
determinant wave function are 1, A is equal to It is shown in

1, N
Section 5 that A is also equal to 1, N°*
’

1,N°
2, N

4, EXTREME PROPERTIES OF WAVE FUNCTIONS

In this section we study the case where the largest eigenvalue of the
M-th order density matrix is almost equal to the least upper bound xM N *

Suppose we have a wave function ¥ such that

(‘fr:n‘: f)=‘ AM,N — €

where € is a small non-negative number and { is a normalized func-
tion of M particles. It should be noted that f may or may not be. an

eigenfunction of I‘M

&, Ny = J(M)/Amn Oas §(1,"--,M)9(M+1,--;N)

v ° Define a function ¢ by the equation



where

?(M-H, - N) = m)/ﬂnu - £ )j"'j\I’H,--;N) ‘f*(I;--,M)JX."'JXM.

It is easy to se= that

1
(%;g—) ey (f Tow £) =1

(¥, 8) = I(W)/amn (F Ons $9) =

- ﬂﬁ)/%mn (W, ‘}3') -

- |1 - 3
J AM, N

and

(8,3) = (N)(£9 Ons$9)apy < 1

Then it follows that

O (¥-8,¥-2) - (V) +(2,d) - d)-(dY¥)s

52—2,]1-8 < 2E

AM, N AM. N

From the first three terms of (4-1), we obtain

(§,§)22’1-,\im -1 > 1 - ;:N

(4-1)
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Summarizing the results obtained above, we have a theorem.

Theorem 3. If a normalised M-particle function f satisfies the
"following equation

('f Tﬂm,{r 'f) = AN N €

P4

the wave function ¥ can be expressed as

- J(ﬁ)/AM,N OAS 'fH,---.n)gmn,-nN) "’&“,"'.N)

where (3,,3,)-1, (&“)S _‘AZ_E___

M.N

. -2E
and 12F-R¥-4)21 Yo

We apply the above theorem to the first order density matrix. We
know that some of the eigenvalues of the first order density matrix can be

M,

e (L= Z funflan + 2 n )‘mf (1),

1.21 { v el

In such a case, it follows from Theorem 3 that the wave function Y can be
expressed as

Y = [V Oas fitn g, n (4-3)

Using (3-1), we obtain

1 =(F,¥) =N (4 Onstige)=1- [ desdmg, | [0 guisamendmf’
i.é.

fde $icn g2 n-n mo (4-4)
The first order density matrix of g is found from (4-3) and (4-4) to be

r": 44 = r;,*lf - T?, $4 . (4-5)

Comparing (4-2) with (4-5), we see that the largest eigenvalue of L, & is
also 1 if p> {. Thus by repeated application of the previous ducuuion. it
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is found that

¥ - ?W’:%DT Oas f"”"'fr‘?’}‘rﬂ,--; N),  (4-6)

?
r‘s,xlr - 2 ‘f&x‘fe' r lig (4-7)
ieq
and
jdm ‘f;*(U 3,(1,2,---, N-p) =0 . (4-8)
' (A=1,-4p)

5. THE LEAST UPPER BOUND OF THE EIGENVALUES

OF THE SECOND ORDER DENSITY MATRICES

In this section, we prove that the upper bound AZ N derived in

Section 3 is actually the smallest.

Define functions F, (1...2n) and F,n41(1--+2n+1) by the equa-

tions

Fam (1,--,2m) = Ons ft1,2) 'f(s,ﬂ--- f(zm-t 2m)

(5-1)
Fomet (1,-~,2n+1) = Ogs §(1,2))‘(3.4)---§(zm- 1,2m) g (2n+1)

where £(1,2) is a normalized antisymmetric function of two.particles and

g(1) is an arbitrary normalized function of a particle.

Then it is found that

Ly
(Fam, Fan) = (22 ,:;'l + O (e?) (5-2)

"
z " + 0Ote)

( Fanet, Faner) = el ,

(5-2")
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where

£l ti (T.:,)za Hﬂfu,z)j'(a,w 1704, 3017(2.4) dx,dxadxs dxy. (5-3)

Proof

( Fan, Fom )= (Oas %, Oasf--9) =
= (%% Oasf1)-

=_._..__(21” ZP‘_ ep(f---$Pf-- %)

1
= a
em! F °F
where a, = £ p(f <o fpf... f). There exist 2"n! permutations which

interchange the particles keeping every pair. It is easy to see that ap =1
for such a permutation since &p Pr...f=1...¢ , but otherwise ap is
the order of t:r(I‘1 f)2 .

’

Forodd N, (5-2') can be similarly proven. In this case some of

the permutations will give integrals of the order 1:'1-(1"1 ey g) , but

O<thTislig SJh(T{j)‘h(ﬂ,g)zaJh(ﬁ.yf - £,

Let ¥"(1, N)= Fn(4-5N)/J(Fu, Fn) | (5-4)

Using (3-1), (5-2) and (5-2') we obtain

(", ") = 1 =
- (Fu-2, Fn-2)
(Fn , Fu )

(_f_,‘yN-Z OAS _f\PN-Z)_

1=Ta Trg Tygr2 + (f T3 am §)
(3] + Oce)
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Here we have used a trivial equality.

Oas (1, N) = QOas (3,-:NYOas(1,,N) Oas (3 -;N).

Since tr Iy (T, yw-2= O(E) , we finally obtain
N
(f T2e0$) = [5) + Oce). (5-5)

It is possible to make tr(I‘l f')2 as small as we wish, and therefore the

largest eigenvalue of T, g can be arbitrarily close to Az N °
» ’

It is found further that a wave function ¥ can be approximated by

the form (5-4), if the largest eigenvalue is close to A To prove this,

2,N°
suppose we have an N-particle wave function ¥ and a 2-particle function

f such that

(f Tow f) = (5] = ¢ (5-6)

Then using Theorem 3 and (3-1), we obtain

¥ = J(3)/Ayn Oas ‘f%, + P4

where (hl|h1)< 2¢€ /AZ.N ’

and

1 —X:N S ('ﬁ‘) (‘f%q OAngd)//\z,N -

= {1 -0 T Ty + (f g )} Aan

Since tr l"1 ¢ r 0, we see that

>
1,8

('f U31f) 2 Nz,n-2 - 2¢ (5-7)
showing that the function g, can be again expressed as

9+ -,[(Niz)//\z,N-z Oas fg,z + ha
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where (h2|hz) < 4¢€ /AZ,N-Z . Repeating the procedure, we obtain

a decomposition of the total wave function VY :

Vo= J(5)A2n Ons§$(J ("33 A n-2 Oas $ (3] +h2 ] + 44

NI
- : Ons f(1,20f34)--F(N-1,N) + h(4,--.N)  (N: even)
2% (N2)! . J
NI |
- Zufi(ﬂ.?':-.l)l OAS'5‘(1.2)f(3,4)...)‘(N_2,N-1)9(N)+ f(a,-., N) (N: odd)
where (h|h) =O(€). Q.E.D.

By using (5-3), the first order density matrix can be written in the

form
n,‘l’ ™ "12\_1" T"‘, f (N: even)
(5-9)
Ty ~-Toy + 9)(q.  (N:odd)

The expressions (5-8) and (5-9) suggest that such a state may be interpreted
as a system of fermion pairs which occupy the same state. These electron
pairs behave like quasi-bosons and, since they are all in the same state, the
limiting wave function corresponds to a situation with complete Bose-Einstein

condensation.
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APPENDIX A

Let f and g be elements of two Hilbert spaces E and E'
respectively, and A be a linear operator which is completely continuous
and hence transforms every infinite and bounded set in E' into a compact

setin E'., If. A isnota zero operator, there exists a sequence
{f(“)} such that

B0 =1 and  BAS™U— swp AN/ 1FE =
4eE

where By > 0 . From the compactness of {Af( )} it follows that the
sequence {Af( )/p } = {g( )} contains a subsequence {g( k)} which

converges to an element g, of E'. The norm of g, is1, since
g™ =L adew) 7y
1

In addition, the sequence {f(nk)} itself converges to an element
f1 of E. Consider a linear functional K(f) = (Af,gl) + The least upper
bound of |K(f)| =v on the sphere gf" =1 isequalto p, . To prove

v2p,, consider the sequence {7k} | Then

v 2 [K(§Me)] = | (A$M™, 9,1)' — i (R —00).

On the other hand

v = L 1A, W= b hom Lo [CAE ™ AF™)| <

m —» s0 H'1 M00 Jgp 00

T M LASN Lo HAS™) < py

- 'A‘ m->00 k-3 00

where {f'(m)} is a sequence which gives

| K ($"™)] — » as M — 6o .

Thus we obtain

i .f.(”n) _ Ttm)uz -4~ | 'f”"')'* {,(m)'?-

| K ( i("”"' _5_("4))]’ ,K ( _5(11:-)) + K ( _*t'nn,ll

< 4 - ‘2 - 4‘ - P12.
— 4 - I R “'1"1' -0,
P
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since [K(f)| < My | £ for any fe E . Thus we can conclude that
£k "converges to an element f1 "of E as a result of the completeness
of E.

It is easy to see that the elements f1 and g satisfy the equation

A'f1 =g1r‘1

since A'fm.) — }41 ﬁc'm') for any My .
We note that
Aup FCAS, gl =
fekE
g€ E’
under the condition || f[l = g ]l =1, since

P -(A‘f1,34) < ;wTLI(A'f,gﬂ < A.ALP.IA)‘N'“%J - Hi1.

Repeating the above procedure in the subspace of E which consists
of all the elements orthogonal to f, , we obtain a pair of elements (f, and gz).

and By » if A is not a zero operator in the subspace. In general, fk

and g, are obtained as a solution of the following extremum problem;

(Afe. ge) = aup TASR/Hf1 = pe >0 (a-1)
.f.

under the conditions | £ f =1 81 [ =1 ana (£, f)=0 (i=1,2,..., k-1).
This procedure terminates when g, vanishes. It follows that

Afe = e gk

and moreover that the set {gk} is an orthmormal set. This follows from

the evaluation
o ﬁk "’P‘}" - J&f*+ 1gl* + 2 R(O(P(gklgl))_
- 1A 'f'h .,-_E_ h)ﬂ
< r&: -F'.f.,-v M 'h. PO Y L -%IPIZ
(k < ).
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2
: He :
Setting B =a (g, . gk)-—z we obtain
Py
2 pe |
Hence (g, g,)=0-

The sequence {p.n} is evidently composed of monotonically
decreasing and positive terms

42 R 2 > 0.
po 2 p

We can prove that Pr™ 0 as k- o if the sequence is infinite. If

B B> 0, the sequence {pkgk} = A{fk} , which is a bounded sequence
{fk} transformed by A , would not contain a convergent subsequence,
since

Tpe g - pogel” = P+ pd 2 2p° 20 fork+ .
An arbitrary element of E may be expressed as

m

$ = Z (fi, P24+ £

imq (AZ)

where £(n) is orthogonal to £, (i=1, 2, ... n)and

”n

”n
™= -2 (i, p 58P = 0 f0°- PANCTE RaN
1=1 [ R4
Therefore if the sequence {pi} is infinite,

uA{(m" < e 'fcmn < Home 1 Jf8 — 0

as n- o. Operating by A on both sides of (A-2) and taking the limit,
we obtain

1=

Af= Z (hif) Moo= 2 pectid) g

In the case where the sequence {p,i} terminates at y, , it follows from
(A-1) that

| Af®) =0,
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Thus we obtain
k

Af = é pi (i, 1) g
This proves Theorem 1.

It follows from Theorem 1 that
(Af.g) = Z i (£30030,9) AT g1t porZ g, pl' s
< Wy KN UG '
Setting f=£1 and g = g, » we obtain
(A'f1, g4 ) = P

Thus, we have proven Corollary {.

To prove Theorem 2, let S 'be a normal operator such that
AS=A .

Then
He1-8)fel? = ((1-sH01-8) fi, fo) = ((1-83(1-8%) fi, Fuo)=
.J_ - - + N . -—1- . -
- F‘(Am $)(1-8*)fi, ¢:) r{(O,g..) 0.

This proves Theorem 2.
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APPENDIX B

In order to prove that the transformation under consideration is
completely continuous, we shall show that any weakly convergent sequence

{fn(y)} is transformed by ¥(x,y) into a strongly convergent sequence
{g,(x)} -

From (1-1) it follows that the function
ko) =[x yol* dy

has a definite and finite value for almost all x . Therefore, since

{fn(y)} is weakly convergent,

O (X = G (%) = ¥ ey () dy - oy j,..()ud)/
tends to 0 almost everywhere when m, n- o .

Using Schwarz's inequality, we have

| g,,(xﬂz - Sf\I,’ (x,y) 'fq.(y) \If(x,)") )Lm(y’) dy d)/s

< SI\I’CX,))‘ZJ)/ j‘ ‘f‘n(])'zd)/ £ Mlex)

Here a finite number M is an upper bound of a sequence {f Ifn(y)lzdy} .
Then

| gﬂtx)—g,.,m[zs 1§ COF +14m00Of* + 219000 9uim] < 4 M ke (x)

Since 4Mk(x) is a Lebesgue-integrable function and we have shown that
lgn(x) - gm(x) Iz tends to 0 almost everywhere, it follows from Lebesgue's

theorem that

_S Ig,.uo —gm(x)lz dx — 0

when n, m- o . Q.E.D.
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